TROIKA: A General Framework for Heart Rate Monitoring Using Wrist-Type Photoplethysmographic (PPG) Signals During Intensive Physical Exercise
نویسندگان
چکیده
Heart rate monitoring using wrist-type photoplethysmographic (PPG) signals during subjects’ intensive exercise is a difficult problem, since the signals are contaminated by extremely strong motion artifacts caused by subjects’ hand movements. So far few works have studied this problem. In this work, a general framework, termed TROIKA, is proposed, which consists of signal decomposiTion for denoising, sparse signal RecOnstructIon for high-resolution spectrum estimation, and spectral peaK trAcking with verification. The TROIKA framework has high estimation accuracy and is robust to strong motion artifacts. Many variants can be straightforwardly derived from this framework. Experimental results on datasets recorded from 12 subjects during fast running at the peak speed of 15 km/hour showed that the average absolute error of heart rate estimation was 2.34 beat per minute (BPM), and the Pearson correlation between the estimates and the ground-truth of heart rate was 0.992. This framework is of great values to wearable devices such as smart-watches which use PPG signals to monitor heart rate for fitness.
منابع مشابه
Robust heart rate estimation using wrist-type photoplethysmographic signals during physical exercise: an approach based on adaptive filtering.
Photoplethysmographic (PPG) signals are easily corrupted by motion artifacts when the subjects perform physical exercise. This paper introduces a two-step processing scheme to estimate heart rate (HR) from wrist-type PPG signals strongly corrupted by motion artifacts. Adaptive noise cancellation, using normalized least-mean-square algorithm, is first performed to attenuate motion artifacts and ...
متن کاملMobileSOFT: U: A Deep Learning Framework to Monitor Heart Rate During Intensive Physical Exercise
Wearable biosensors have become increasingly popular in healthcare due to their capabilities for low cost and long term biosignal monitoring. However, current determination of heart rate through wearable devices and mobile applications suffers from high corruption of signals during intensive physical exercise. In this paper, we present a novel technique for accurately determining heart rate dur...
متن کاملA time-frequency domain approach of heart rate estimation from photoplethysmographic (PPG) signal
ObjectiveHeart rate monitoring using wrist type Photoplethysmographic (PPG) signals is getting popularity because of construction simplicity and low cost of wearable devices. The task becomes very difficult due to the presence of various motion artifacts. The objective is to develop algorithms to reduce the effect of motion artifacts and thus obtain accurate heart rate estimation. MethodsPropos...
متن کاملDescription of a Database Containing Wrist PPG Signals Recorded during Physical Exercise with Both Accelerometer and Gyroscope Measures of Motion
Abstract: Wearable heart rate sensors such as those found in smartwatches are commonly based upon Photoplethysmography (PPG) which shines a light into the wrist and measures the amount of light reflected back. This method works well for stationary subjects, but in exercise situations, PPG signals are heavily corrupted by motion artifacts. The presence of these artifacts necessitates the creatio...
متن کاملCascade and parallel combination (CPC) of adaptive filters for estimating heart rate during intensive physical exercise from photoplethysmographic signal
Photoplethysmographic (PPG) signal is getting popularity for monitoring heart rate in wearable devices because of simplicity of construction and low cost of the sensor. The task becomes very difficult due to the presence of various motion artefacts. In this study, an algorithm based on cascade and parallel combination (CPC) of adaptive filters is proposed in order to reduce the effect of motion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1409.5181 شماره
صفحات -
تاریخ انتشار 2014